Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Infinite-order apeirogonal tiling
Infinite-order apeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration∞∞
Schläfli symbol{∞,∞}
Wythoff symbol∞ | ∞ 2∞ ∞ | ∞
Coxeter diagram
Symmetry group[∞,∞], (*∞∞2)[(∞,∞,∞)], (*∞∞∞)
Dualself-dual
PropertiesVertex-transitive, edge-transitive, face-transitive

The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.

Related Image Collections Add Image
We don't have any YouTube videos related to Infinite-order apeirogonal tiling yet.
We don't have any PDF documents related to Infinite-order apeirogonal tiling yet.
We don't have any Books related to Infinite-order apeirogonal tiling yet.
We don't have any archived web articles related to Infinite-order apeirogonal tiling yet.

Symmetry

This tiling represents the fundamental domains of *∞∞ symmetry.

Uniform colorings

This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.

Domains012
symmetry:[(∞,∞,∞)]  t0{(∞,∞,∞)}t1{(∞,∞,∞)}t2{(∞,∞,∞)}

The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.

a{∞,∞} or = ∪
Paracompact uniform tilings in [∞,∞] family
  • v
  • t
  • e
= = = = = = = = = = = =
{∞,∞}t{∞,∞}r{∞,∞}2t{∞,∞}=t{∞,∞}2r{∞,∞}={∞,∞}rr{∞,∞}tr{∞,∞}
Dual tilings
V∞∞V∞.∞.∞V(∞.∞)2V∞.∞.∞V∞∞V4.∞.4.∞V4.4.∞
Alternations
[1+,∞,∞](*∞∞2)[∞+,∞](∞*∞)[∞,1+,∞](*∞∞∞∞)[∞,∞+](∞*∞)[∞,∞,1+](*∞∞2)[(∞,∞,2+)](2*∞∞)[∞,∞]+(2∞∞)
h{∞,∞}s{∞,∞}hr{∞,∞}s{∞,∞}h2{∞,∞}hrr{∞,∞}sr{∞,∞}
Alternation duals
V(∞.∞)∞V(3.∞)3V(∞.4)4V(3.∞)3V∞∞V(4.∞.4)2V3.3.∞.3.∞
Paracompact uniform tilings in [(∞,∞,∞)] family
  • v
  • t
  • e
(∞,∞,∞)h{∞,∞}r(∞,∞,∞)h2{∞,∞}(∞,∞,∞)h{∞,∞}r(∞,∞,∞)h2{∞,∞}(∞,∞,∞)h{∞,∞}r(∞,∞,∞)r{∞,∞}t(∞,∞,∞)t{∞,∞}
Dual tilings
V∞∞V∞.∞.∞.∞V∞∞V∞.∞.∞.∞V∞∞V∞.∞.∞.∞V∞.∞.∞
Alternations
[(1+,∞,∞,∞)](*∞∞∞∞)[∞+,∞,∞)](∞*∞)[∞,1+,∞,∞)](*∞∞∞∞)[∞,∞+,∞)](∞*∞)[(∞,∞,∞,1+)](*∞∞∞∞)[(∞,∞,∞+)](∞*∞)[∞,∞,∞)]+(∞∞∞)
Alternation duals
V(∞.∞)∞V(∞.4)4V(∞.∞)∞V(∞.4)4V(∞.∞)∞V(∞.4)4V3.∞.3.∞.3.∞

See also

Wikimedia Commons has media related to Infinite-order apeirogonal tiling.
  • John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.